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Abstract 

Crystalline Beams are an ordered state of an ensemble of ions circulating in a Storage 

Ring with very small velocity fluctuations. They can be obtained from ordinary warm ion 

beams with the application of intense cooling techniques, namely electron and/or laser 

cooling. A phase transition occurs when sufficiently small velocity spreads are reached, 

freezing the particle-to-particle spacing in strings, zig-zags, and helices.. . The properties 

and feasibility of Crystalline Beams depend on the choice of the lattice of the Storage 

Ring. There are three issues closely related to the design of the Storage Ring, namely: the 

determination of Equilibrium Configurations, Confinement Conditions, and Stability 

Conditions. Of particular concern is the effect of the trajectory curvature and of the beam 

momentum spread. They both set the requirements on the amount of momentum cooling, 

on the focussing, and on the distribution of bending in the lattice of the Storage Ring. The 

practical demonstration of Crystalline Beams may create the basis for an advanced 

technology of particle accelerators. The limitations due to Coulomb intra-beam scattering 

and space-charge forces would be finally be brought under control, so that ordered beams 

of ions can be achieved for a variety of new applications. 

Introduction 

We should first differentiate between Crystalline Structures that have been observed 

experimentally, and Crystalline Beams that still have to be demonstrated. Crystalline 

Structures are stationary strongly Coulomb-coupled Plasmas, usually confined in ion 

traps. They are derived from non-neutral plasmas made of one gas component. After 

removing internal energy by means of laser cooling, the original ionized gas acquires a 

low internal temperature, as low as few PKeivin degrees. A transition of phase has been 

experimentally observed where ions acquire a rigid configuration spacing from each 

other at equal distance. The next section of this paper will describe properties of 

Crystalline Structures. 

l Work performed under the auspices of the US Department of Energy 



Crystalline Beams are an ordered state of an ensemble of ions, circulating in a storage 

ring, with very small velocity fluctuations. They have been studied theoretically but have 

never been observed experimentally in existing particle storage rings. The second section 

of this paper describes the properties of Crystalline Beams, and what are the conditions 

and requirements to be satisfied by both the ion beam and the storage ring. 

Crystalline Beams can be obtained from ordinary warm ion beams with the application of 

fast and effective electron and/or laser cooling. Like in Crystalline Structures, a phase 

transition occurs when sufficiently small velocity spreads are reached, which freezes the 

ions to an ordered configuration, by equally spacing from each other. The simplest 

configuration is a string where the ions are equally spaced longitudinally from each other. 

More complex configurations are zig-zags, helices.. . which can always be described as 

several strings placed parallel to each other. The relevant parameter describing a string is 

the ion longitudinal spacing h. 

There are three steps involved to study the properties of Crystalline Beams. During the 

first step, one determines the Equilibrium Configuration, that is essentially how many 

parallel strings the whole Crystalline Beam is made of, and where it is located, namely 

the lattice of the storage ring. The second step introduces the Confinement Conditions, a 

set of equations that are to be satisfied by both the beam and the storage ring consistently 

with the postulated Configuration. Finally, in the third step, the stability of the 

Configuration is evaluated by solvin, 0 another set of equations which takes into account 

the evolution of a small perturbation added to the system. 

Differently from Crystalline Structures, of a particular concern for the stability of a 

Crystalline Beam is the effect of the trajectory curvature and of the beam momentum 

spread (shear e@ct). This sets very stringent requirements on the amount of momentum 

cooling, on the focussing, and on the distribution of bending in the lattice of the storage 

ring. One requirement is that the storage ring operates at energies well below the 

transition energy. 

The requirements on the storage ring lattice are very stringent and not satisfied by 

ordinary operational storage rings, which therefore explains why Crystalline Beams have 

not been observed yet. A new concept of storage ring, the Circular Radio-Frequency 

Quadrupole Storage Ring (CRFQ), may have a lattice capable to satisfy the requirements 

and thus be ideal for the demonstration of Crystalline Beams. 

In this paper we shall not describe the cooling process, the cooling requirements, and how 

the transition actually occurs. We shall limit ourselves to the study of the ground state of 

2 



a Crystalline Beam, namely its confined and stable configuration. The aim of the research 

is to demonstrate whether Crystalline Beams do indeed allow larger ion densities, and 

how to take advantage of the knowledge that the beam has an ordered configuration. As 

we shall see, in order to understand the formation of Crystalline Beams, it is necessary to 

observe the beam at microscopic level, that is at particle-to-particle distances, where 

Intra-Beam Scattering (Coulomb Scattering) and Space-Charge forces are unified. With 

this understood, it will be shown that the depression of the storage ring focussing caused 

by the space-charge forces, down to a half-integral structural resonance, determines the 

range of existence of a particular Crystalline Beam configuration. This eventually sets 

requirements on the storage ring periodic&y and betatron tunes. 

Crystalline Structures 

As we have already said Crystalline Structures are stationary strongly Coulomb-coupled 

Plasmas which have been observed in Ion Traps. They are derived from one-component 

non-neutral plasmas after removing internal energy at sufficient high rate and effectively, 

with either Electron or Laser Cooling or the combination of both. Once a sufficient low 

temperature T has been reached, ions have tendency to equally distance from each other 

with a separation distance h that depends on the density n. Moreover, ions vibrate at an 

angular frequency o, around equally-spaced center of oscillations. As a consequence of 

the low temperature, ions have a residual vibration of amplitude a << h. 

In summary the main parameters describing a Crystalline Structure are: 

l Ion Mass Number A 

l Ion Charge State Q 
l Ion Separation Distance h 

l Residual Vibration Amplitude a 

l Vibration (angular) Frequency 0 

l Residual Temperature T 

l Ion Density n 

Wiener ‘s Crvstal 

It was Wigner to conceive the first Crystalline Structure in its simplest form [ 11. Let us 

consider an ensemble of electrically charged particles, all identical to each other with 

charge state Q and mass number A. Let us assume that they are point-like with no 

internal structure, and that the only way they interact with each other is by Coulomb 



interaction. Let us assume also that, as shown in Figure 1, all particles are at rest and are 

equally spaced, that is T = u = 0. Let h be the particle-to-particle separation, the same in 

all three physical dimensions. Thus, the particles are located in such a way to form a 

three-dimensional grid with the lattice spacing h. Moreover, let us assume that such 

crystalline structure extends to infinity in all three directions. 

Figure 1. The Wigner’s Crystal 

It is obvious that this structure is an equilibrium configuration. Since particles do not 

move and are equally spaced, from symmetry, it is seen that there is no net force acting 

on any particle, and thus the particle will remain in that configuration forever, no matter 

how small the spacing h. If we take any particle of this idealized Crystalline Beam and 

displace it by an amount a small compared to the spacing h, leaving all other particles 

unperturbed, it will execute stable oscillations with amplitude a and angular frequency 

00 = 2.4 Q’ c2 r, I A h3 (1) 

where c is the speed of light and r, = 1.535 x 10el’ m, the classical proton radius. 

The r-Parameter 

To each ion of a Crystalline Structure we can associate a Potential Energy U and a 

Kinetic Energy T 

u = Q' e’ I h (2) 
T = qAcu”a’/2 (3) 

where e is the electron charge and m, the proton mass at rest. In the early 60’s Brush, 

Sahlin and Teller made several computer simulations with the Montecarlo approach of a 
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one-component plasma [2]. They took a number of identical ions interacting with each 

other immersed in a uniform neutralizing background. They found that the ratio 

r = U/T Z (h/a)’ (4) 

describes properties of an ensemble of electrically charged ions. F < 1 corresponds to a 

gas-like structure (as in Particle Accelerators), where particles move overtaking each 

other. By reducing the plasma internal temperature, or by bringing ions closer together, 

one obtains values F - 1 where an amorphous, fluid-like ordering appears. Particles 

acquire an oscillatory behavior with identifiable centers of oscillation; but the amplitudes 

are still large so that trajectories roll over each other. Reducing T and/or increasing U 

further to reach F >> 1 finally yields to the Crystalline Structures. The amplitude a of the 

oscillation is now considerably smaller than the spacing h. It was determined that the 

onset of the phase transition occurs at I? - 100. From Eq. (4) we infer that a condition on 

the plasma temperature for Crystallization is a < 0.1 h. 

Similar computer simulations were done later by Rahman and Schiffer [3], using this 

time more efficient computers, and the Molecular Dynamics method introduced by Alder 

and Wainright [4] during the late 60’s. The results by Rahman and Schiffer are in full 

agreement with those found earlier by Brush, Sahlin and Teller. 

Experimental Observations 

Crystalline Structures have been experimentally observed in Ion Traps; first, by H. 

Walther at the Max Planck Institute in Germany [5], and more recently in various other 

institutions [6]. 

The ion trap used by Walther was a simplified quadrupole storage ring with a diameter of 

only 11.5 cm. The toroidal vacuum chamber, with an inner diameter of 5 mm, was made 

of four circular electrodes parallel to each other and arranged to form the shape of a 

quadrupole, as shown in Figure 2. Rf voltage is applied between the electrodes to 

generate a radial parabolic potential in which to trap the ions. A neutral atomic pulse of 

“4Mg was injected into the trap that was maintained at very good vacuum conditions. At 

the point of injection the atoms were partially stripped by a perpendicular beam of 

electrons. Because of their common electric charge, ions would repel each other, and 

distribute uniformly along the circumference of the storage ring; at the same time they are 

trapped transversely by the parabolic potential, and perform stable transverse oscillations. 



A laser beam, tuned to the excitation frequency of the ions, shines along the longitudinal 

direction, causes momentum cooling, and the ions quickly pack toward the center of the 

distribution. Using the fluorescence emanated from the ions, once high densities and low 

temperature were reached, crystallization was observed, and several structures noticed: 

strings, zig-tags, and helices, as shown in Figure 3. Which configuration appeared 

depended on the density of the injected gas. The ion spacing measured was of the order 

of few tens of micron. The experimental observations were in full agreement with the 

theoretical and computer simulation predictions of the preceding years. 

Figure 2. The Ion Trap used in Walther experiment [5]. 

In these experiments we always deal with stationary Structures and not with Beams, 

since, as in the case just described of Walther experiment, the ions in the trap were 

longitudinally at rest. 

Crystalline Beams 

The extrapolation of Crystalline Structures to Crystalline Beams is a natural aspiration. It 

is highly desirable to demonstrate that Crystalline Structures like those observed in 

Walther experiment can actually be made moving and circulating in a storage ring at at 

least non-relativistic velocities. The search for the formation of Crystalline Beams has 

now be going on for the last two decades mostly in European laboratories, like ASTRID 

in Copenaghen, TSR in Heidelber,, (J and CRYRING in Stockholm [7-91. The search so far 

has remained fruitless. A storage ring CRYSTAL was even proposed by the Legnaro 



Laboratory near Padua, Italy, just for the demonstration of Crystalline Beams. But once it 

was realized that the goal was difficult, if not impossible, to achieve, the project was 

discontinued. It was speculated that some type of organized beam formation was 

observed in NAP-M at Novosibirsky when the proton beam was cooled. But that 

remained just a speculation, since in the meantime, the storage ring was de-commissioned 

and dismantled. 

A String 

A Zig-Zag 

Figure 3. Observed Crystalline Structures in Walther experiment [5]. 

As we shall see, at most a string or a vertical zig-zag may be observed in available, 

conventional storage rings made of bending magnets and focussing quadrupoles. The 

requirements on the lattice are too severe and not easily satisfied by ordinary storage 

rings. Moreover, the shear effect caused by the bending and the curvature of the 

trajectory, that did not exist in the case of Crystalline Structures, complicates matter 

because of the tendency to break the Crystal. Crystalline Beams can be eventually 

demonstrated only with a novel concept of storage ring. 

The Confinement Issue 

The properties of the Wigner’s Crystal do not change if the crystal is moving in any fixed 

direction at any constant velocity, apart from some trivial relativistic transformation. If 

the structure moves, we have than some sort of a Crystalline Beam. But it is an unrealistic 

beam, because its dimensions extend to infinity. A realistic beam has a finite transverse 

size. Particles at the edge of the beam will spread out and the crystalline structure will 

soon collapse. A Crystalline Beam can be maintained with a finite transverse size by 

applying external confining forces to balance the repulsion among particles. These forces 

7 



are those created by quadrupole magnets or other similar focussing elements that are used 

in ordinary particle storage rings. 

The most common restoring forces are those that vary linearly with a particle transverse 

displacements from a reference trajectory. Hasse and Schiffer have studied this case with 

computer simulation [lo]. They imposed on the beam a parabolic external potential of 

constant gradient along the main direction of motion, simultaneously focussing in both 

transverse dimensions. The motion of the particles is then oscillating at the angular 

frequency o,,. Because typical phase-space trajectories are circular, they found 

configurations of Crystalline Beams which are not rectangular but take the shape notably 

of strings, zig-zags, helices, and any combination of them. Hasse and Schiffer used a 

parameter hs = (N/C) (3 m, A Q’ e2 / 02)~‘~ to determine when a particular configuration 

would appear, as shown in Figure 4. N is the total number of ions circulating in the 

storage ring of circumference C. The transition from one lower configuration to another 

is obtained by increasing the value of the parameter A.,,, either by increasing the beam 

intensity N, or by reducing the strength of the external restoring forces. 

The focussing model used by Hasse and Schiffer is unrealistic since it is made of a 

continuous constant gradient transport focussing simultaneously in both transverse 

directions. This can be realized only in a type of Betatron, a weak-focussing storage ring. 

Moreover the bending of the trajectory was completely ignored. At the beginning [7], it 

was thought that a Betatron could be indeed the ideal storage ring for the confinement of 

Crystalline Beams. More recently [8] it was actually determined that the motion of a 

Crystalline Beam is always unstable, first because the focussing is too weak, and second 

because of the shear e$fkct of the bending magnet. 

Confimrations 

The simplest Crystalline Beam configuration is the string, a one-dimensional 

configuration where particles are located on a common axis, equally spaced by the 

distance h. Small perturbations are allowed as long they have an amplitude not larger 

than a fraction of h. The next configuration is a two-dimensional structure: the zig-zag. It 

can be though of as two parallel strings separated by a distance 2a, each with the same 

longitudinal spacing h but shifted with respect to each other by U2 (see Figure 4). The 

ratio of the transverse separation 24 to the longitudinal spacing h depends on the strength 

of the external restoring forces. The zig-zag may be either vertical or horizontal. A three- 

dimensional configuration is given by the helix made of a number of strings parallel to 

each other, all with the same longitudinal spacing h, and symmetrically located along the 
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contour of an ellipse. The aspect ratio depends on the magnitude of the transverse 

components of the external forces. Finally, if the original beam is very intense, several 

helices surrounding each other with the same aspect ratio appear. 

l l l l l l 
___-________---____------------ 
l l l l l l l 

l + 

String h,, = 0.6 

Zig-Zag & = 0.9 

Helix Am = 1.3 

Figure 4. Crystalline Beam Configurations revealed by computer simulation. 

The Procedure 

To study the formation and the properties of Crystalline Beams in their ground state there 

is a procedure [l l] made essentially of the following four major steps: 

i. 

ii. 

. . . 
111. 

iv. 

One begins by defining a desired Equilibrium Configuration made of strings, tig- 

zags, and helices. This will depend on the beam parameters like intensity and 

energy, and on the focussing and bending properties of the storage ring, namely 

the lattice. 

One then searches for the Confinement Conditions; that is, the requirements on 

the magnitude and distribution of the external forces to maintain the Equilibrium 

Configuration. Our interest here is only in continuous beams that do not need 

longitudinal confinement. 

By adding a small perturbation to the motion of a test particle one derives the 

Stability Conditions that have also to be fulfilled by the same external forces that 

provide confinement. 

Finally, one determines the temperature required to achieve the phase transition to 

the crystalline configuration, and express it in the terms of the beam momentum 

spread and transverse emittance. 

Storage Rinn and Beam Parameters 

The Storage Ring is essentially described by its circumference C = 2nR, and the 

Periodicity of the lattice P which in the following we assume to be even. It is also 

desirable that each period has an internal mirror symmetry. The motion of a particle is 
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described by the betatron tunes vu and Y,, and the transition energy yr; and by the 

amplitude lattice functions &, and &, the curvature h of the reference closed orbit, and 

the dispersion q which also vary periodically along the circumference of the ring. We 

assume here that the curvature exists only on the horizontal plane. 

On the other end, as we have already seen, a Beam of charged particles is described by 

the charge state Q and the mass number A of the ions, their velocity and energy 

relativistic factors p and y, and the intensity, that is, the total number N of circulating 

particles. A descriptive parameter is also the average longitudinal spacing h = N /C, that 

we have already seen appearing in the Hasse-Schiffer parameter. 

How to pet a String 

Start with a dilute beam, that is, low intensity N and large spacing h as shown in Figure 

5a. We expect also that the effects of the space-charge forces are small. Apply cooling to 

reduce the beam temperature by removing internal energy. As the beam temperature 

drops the amplitude of the transverse oscillations reduces, bringing the particles closer 

together. As the beam gets denser Space-Charge (SC) forces and Intra-Beam Scattering 

(IBS) also increase. The cooling rate ought to be sufficiently fast to overcome SC forces 

and IBS. Eventually, the amplitude of the transverse oscillation becomes comparable to 

the average spacing h (Figure 5b), and even smaller (Figure 5~). 

At the same time, at the start, the beam momentum spread is large and particles drift 

longitudinally. Those with larger momentum overtake particles in the middle of the 

beam, and those with lower momentum will lag behind (Figure 6a). With Cooling also 

the momentum spread reduces, and when the spread is sufficiently small, particles 

acquire an aligned configuration, as shown in Figure 6b. The position of each particle 

ultimately will freeze with spacing h. They align themselves one behind the other, and 

ions perform longitudinal and transverse oscillations with amplitude a << h. We have 

thus obtained a string! [ 121. 

In a string configuration, ions perform small-amplitude oscillations, in the longitudinal 

direction at the frequency v, f, , where f,, is the revolution frequency, and in the two 

transverse directions with frequencies v H.V f,. In this lowest configuration state, space- 

charge forces are not very significant, and the betatron tunes v,,, are unaffected. On the 

other end, the longitudinal frequency is about given by Eq. (l), which depends on the 

particle-to-particle density and thus on the beam intensity. 
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Elgure 5. pyticie distribution in the transverse phase planes: a) dilute. before cooling; 
beam dimension is larger fhan average longitudinal spacing k shown by circle with thr: 

same radius. b) dense. during cooling; beam dimension is comparable to A. c) phase wan- 
sition to rbe srring; the amplitude of the vansverSe osciilncionm is considerably smatlcr 
thilnA.. 

Figure 6. Particle disvibucion in the longitudinal phase planes: a) dilute. hcforu cooling; 

bec~usc momentum spread is large. padcle~ drift. b) dcnsc. after cooling; @tics 

acquire equxli spacing A and oscillate (;1s shown by smtil ellipse). 

How to get a Zip-Zag 

Once we have obtained a string, we can repeat the same conceptual experiment described 

above. We increase first the beam intensity N and reduce correspondingly the average 

longitudinal spacing h. Increasing the beam intensity, of course, will make the space- 

charge forces more pronounced. They depress the transverse oscillation frequencies, and 

at the same time raise the longitudinal oscillation frequency. At a certain critical value of 

h (that is N), the oscillation frequencies and the revolution frequency f, may be found in a 

parametric resonance. When this occurs, the motion of an individual particle becomes 

unstable and the string configuration undergoes a transformation. The phase-space origin 

becomes an unstable fixed-point around which the motion diverges. This is accompanied 

by two new stable fixed points located off-axis, as shown in Figure 7. Particles now 

oscillate around the new pair of stable fixed points separated by a distance 2b (# A) which 

depends on how close is the motion to the parametric resonance. A zig-zag is thus 

formed! [ 13,141. 
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Figure 7. The formation of a Zig-Zag. 

Bifurcation and Resonances 

The phenomenon just described is called Bifurcation, which is always associated to 

Period Doubling [ 15,161. A Bifircation occurs either in the radial or vertical direction 

depending on which parametric resonance is encountered first during the shift of the 

oscillation frequencies induced by space charge 

2 vHV = m P m = 0, 1,2, . . . 

It is also possible that a momentum bifurcation occurs if the longitudinal resonance is 

encountered first 

2 v, = P. (6) 

Another possibility is coupling between radial and momentum oscillations 

(3 

vH + vs = mP, m = 0, 1,2, . . . (7) 
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Longitudinal and coupling resonances cause bifurcation only on the radial plane, where 

trajectories have curvature. 

It is to be emphasized that it is the space charge that causes Bifurcation to occur, when 

the tune depression caused by space charge itself causes the approaching and the crossing 

of a structural resonance of the type (5) or (6) or (7). Imperfection resonances are not 

relevant. Any configuration can be thought of a number n, of sub-strings parallel to each 

other and placed symmetrically around the common axis. The particle separation h is the 

same to all sub-srrings. The number of sub-strings is a power of 2, that is, n, = 2p 

where p = pH + pV is the order of bifurcation, of which pH appear in the radial direction 

and pv in the vertical direction. The critical value of the spacing for a bifircation is 

h, = ( 1.2Q’rOR’/A13’y5)1n (8) 

The existence and direction of the bifircation depends on the periodicity P and the tunes 

vHv of the storage ring. The process of bifurcation and period doubling repeats over and 

over generating more-complex configurations of Crystalline Beams as shown in Figure 8. 

n.i’ Triple Helix 
o- J 2 0 \ 

t 

0 / . 
. 

\ 
4 \ / . , 

Double HeliceS 
w \ 

The St&~ , 
\ 

* 0 

*: c 
H~/izgul ’ , 

g- ‘g 
, 

Figure 8. Generation of Crystalline Beam Configurations by Bifurcation. 
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The repetitive application of the conceptual experiment where, keeping all other 

conditions unchanged, the intensity N increases, from one step to next, will cause the 

reducing of the spacing h also for the zig-tag until, due to the encounter with one of the 

resonances described above, a new stability limit is reached. 

The approach described here, which explains the formation of Crystalline Beam 

configurations by determining the effect of the space-charge forces by approaching a 

low-order stop-band resonance, gives results which are in remarkable agreement with 

those from other studies where the effect of space charge is directly calculated [ 171 in a 

computer program like SYNCH [ 181 in order to determine the variation of the storage- 

ring lattice functions. 

Eauations of Motion 

The storage ring setting and the reference closed orbit correspond to a reference 

momentum value pO. A test particle has in general a momentum p = pO( 1 + 6). Let n and y 

be respectively the radial and vertical displacements of the trajectory of the test particle 

from the reference closed orbit. Let also G denote the difference in path length between 

the test particle and the particle with reference momentum. We shall use the usual 

accelerator physics notation, with s the longitudinal coordinate and a prime denoting 

differentiation with respect to it. The equations of motion then are 

Y” + K,(s) Y - k,F,(x,y, d = 0 (9) 
X” + K,(s) X - k, F&J, a) = h(s) 6 (10) 
(3’ = h(s) x - o/y’ (11) 

6’ = k, F,(x, y, 4 (12) 

where K, and K, define the sequence of the focussing elements in the storage ring. They 

are periodic functions with periodicity P. 

k, = Qr,/eA/3’$ (13) 

The components of the particle-particle interaction FHVe can be derived as the components 

of the gradient of the space-charge potential 

F(x, y, O) = - grad xi Qe / r, (14 
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with ri the distance of the i-th particle in the beam from the test particle. The solution of 

the system Eq.s (9-12) can be divided in two parts: a particular solution which describes 

the envelope of the Crystalline Beam in its equilibrium configuration, and a free solution 

which oscillates around the equilibrium configuration and that can be used to determine 

the stability of the motion. Let 

x=x,+u (15a) 

Y=Y,+v (1%) 

cJ=cr,+u (1%) 

8=6,+fi (1W 

where x,,, y,, cr,,, 6, describe the equilibrium configuration of the n-th sub-string, and U, v, 

a, 6 are perturbations of motion of a test particle on the same sub-string. Separating the 

contributions from the two parts and linearizing the particle-particle forces yield the two 

sets of differential equations: for the Equilibrium Configuration 

YI1” + K,(s) Y, - Kc 0” Yn 
xn” + K&) x, - KCL-I~” 
an’ = h(s) x, - 6” / y* 

6,’ = 2 Y2 L L CJn 

and for the Perturbation 

V” + K,(s) V - K,rlvV 

u” + K&) u - QlH~ 

CT’ = 

i = 

h(s) u - fi/ y2 

2 Y2 L rle _a 

where 

kc = (2 /R3) (IL, / I# = h,’ 

= 0 

= h(s) 6, 

= 0 

= h(s) 5 

(16) 
(17) 

(18) 

(19) 

(20) 
(21) 
(22) 
(23) 

(24) 

‘s Hvc and qHVc are form factors that depend on the arrangement of particles in the 

Crystalline Beam. For instance, for a single string: cHVe = 0 and Q,,~ = 1. For a more 

complex geometry, they are function of the coordinates x, and ya. Their definition is 

summarized in Figure 9. They have been derived in [ 191. The two systems of 
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Eq.s ( 16-19) and Eq.s (20-23) are written and solved n, times, each time for a different 

sub-string. Because of the up-and-down and right-to-left symmetry, only a number equal 

to the order of bifurcationp need to be solved. 

Define: 
I 

cL 2=[5-xm)2+~y_)Z=U 2+” 2 
nm 

y2x2 y2h2 
nm nm 

C[ 
-n/2 

f,(a,r) = a2+ (i-t) 
‘I 

i 

0 

go = C im3 = 1.2 

i= 1 

Form Factors for Envelope equations: 

( see below ) 

-. 

Form Factors for Stability equations: 

1 
CL 

2 
?J = zgo f3(aiwn'Tnm) - 3"rlm f5(a"m'Tnrn )I 

m 

I 
% = q) CL f3(an,,&~~ -3Yn,,12f5(a,l,,,.m"*)l 

111 

?, = glherl,) 

Figure 9. Definition of Parameters and Form Factors of Crystalline Beams. 

The Shear Effect 

It is seen that the coupling between the radial and longitudinal motion is introduced by 

the product of the parameter K, with the curvature h in the bending magnet. The ratio 

5 = h, / h can be used to estimate the magnitude of the coupling: E << 1 corresponds to 

weak coupling; E _ 1 corresponds to strong coupling. The vertical motion is de-coupled 

from the other two components. 



The presence of the curvature term h in the equations of motion may have a negative 

effect on the feasibility of Crystalline Beams in storage rings. We shall see below that 

indeed this is the case for the special case of Betatron magnets. In the absence of 

curvature, h = 0, the horizontal and vertical motion are de-coupled and all particles have 

8 = u = 0, that is they are frozen in the longitudinal direction. But in the presence of 

curvature, particles will acquire different momentum values and have therefore to move 

around each other longitudinally [ 19,211. This effect is called shear, mostly represented 

by Eq. (18). Since x, will vary periodically around the circumference of the storage ring, 

it is expected that also 6, will vary periodically. One allows ions to shift with one 

another, but the net amount of the shear has to vanish periodically. So that horizontally 

and longitudinally the Crystal will breath periodically. It is obvious that therefore one is 

interested only in those solutions of the system of Eq.s (16 19) which is periodical in all 

the four variables involved with the same periodicity of the storage ring. In particular, the 

solution must satisfy isochronous condition across one period. 

The Betatron as a Storage Ring 

The simplest storage ring is made of a single 360” bending magnet with constant 

curvature h and focussing gradient described by the field index n; i.e., a Betatron where 

K, = nh’ and K, = (1 - n) h’. The question was raised [20,21] whether a Crystalline Beam 

can be stored in it. 

The envelope Eq.s (16- 19) can be easily integrated by simply taking X, and y, constant. 

At the same time also the momentum spread 6, = y2 h x, is constant and cr’” = 0. The 

following confinement conditions are then to be satisfied: 

nh’ 

(I-n)h’ 1 
L 5&P YJ (25) 

K, G.&v Y,) + h’ y2 (26) 

These equations can be solved to determine the coordinates X~ and y, as function of the 

index n and curvature h. It is irmnediately seen that the only possible solution for a string, 

for which cHV = 0, requires h = 0, which is unphysical. 

Moreover, the stability conditions, which can be derived from Eq.s (20-23), are, for the 

vertical motion 

(27) 
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and for the horizontal motion 

n<l - yz - E2 n.@,, Y”> < 0 

Since in a Betatron 0 < n < 1 these conditions cannot be satisfied simultaneously. Thus a 

Crystalline Beam cannot be maintained in a Bet&on. On the other end, in an infinitely 

long transport with no bending, that is h = 0, also the horizontal motion is de-coupled 

from the longitudinal one and Crystalline Beam configurations are possible, all with 

0 = 6 = 0, consistent with the finding by Hasse and Schiffer [lo]. 

The Range of Existence 

Several methods are available to solve numerically the system of Eq.s (16-19) to 

determine the envelope of Crystalline Beams. A method makes use of a matrix notation 

and of convergence iterative procedure [22], for instance by inspecting the eigenvaiues of 

the overall transfer matrix per storage ring period. The exact analytical solution is non- 

trivial because of the presence of the non-linear space-charge term. Both Eq.s (16 and 

17) are similar to the K-V envelope equations [23] without the emittance term because 

the beam emittance itself is here zero. We shall attempt to describe the solution of the 

system by using some intuitive and fundamental facts. 

We need to estimate two limiting values of the longitudinal spacing, of which the larger 

one, h,, determines the onset of the configuration being examined made of n, sub-strings, 

and the smaller one, L_, determines the stability limit of the same configuration. Thus 

h < h< h, (29) 

is the range of existence, with the beam undergoing substantial changes enetering and 

leaving it. As h varies within the range, the actual location (x,, _v,) of the sub-strings also 

varies. Of course there is only one beam at any situation and thus only one configuration. 

It is our “conceptual experiment” that allows us to generate a sequence of beams with 

increasing intensity, decreasing longitudinal spacing, and varying configuration. 

The space charge causes shifting of the oscillation frequencies until a major half-integral 

stopband of the type given by Eq. s (S-7) is met. This will occur at either h, or L_. For the 

condition of onset of the configuration we shall apply the method to the envelope Eq.s 

(16-19), and to determine the stability limit the method is applied to the perturbation Eq.s 

(20-23). Since the solution of the beam envelope equations is required to be periodic and 
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closed, the Crystalline Beam configuration can be triggered either by approaching a 

radial or vertical stopband, that is Eq. (5), but not possibly by the longitudinal and 

coupling resonances, Eq.s (6 and 7), which may cause loss of stability but do not generate 

a closed orbit. The configuration under examination has the order of bifurcutionp. It is 

the evolution from a previous configuration of order p - 1 evolving to one of order p + 1. 

In good approximation [ 171, the betatron tune depression caused by space charge is 

derived by treating the space-charge term K, as a perturbation; that is, for the envelope 

equations 

(30) 

and a similar expression for the perturbed equations where <,, is replaced by qHv. 

Let 8~~” be half of the distance of the original betatron tune vHV from the nearest lower 

integral stopband. By requiring AvHv = &vW, we derive the following relation between 

the form factors and the spacing h 

= <H&o, Yn> CHV (31) 

where 

‘HV 
= 1/(v,6vHV) (32) 

The number of relations (3 1) is equal to the order of bi@aztion p. They can be solved 

simultaneously to derive the positions (x,,, y,) of the sub-strings as function of the 

longitudinal separation h. In particular, the value h = h, at which the configuration 

appears is obtained by requiring that for all n, sub-strings involved 

@, 1 u3 < cHV(xn 7 y,> ‘HV 

On the other end, the stability is 

(&I h,)3 ’ r)HV(% ,v”> ‘HV 

(33) 

lost at h = h, when 

(34) 

where the locations of the sub-strings were previously determined as functions of h by 

means of Eq. (31). 
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It can be shown that typically h, - 2 Xc and 4 - h,. At the stability limit h - h_, and the 

transversal separation among sub-strings is comparable to 1,. 

Storaae Rina Reauirements 

Obviously the first requirement is that the storage ring has a periodic sequence with 

strong and alternating focussing. The two betatron tunes should be about identical, v, - 

v,, and the initial beam as “round” as possible, that is the same betatron emittance in both 

transverse planes of oscillation. The storage ring ought to operate below the transition 

energy. The periodic@ ought to be larger than the betatron tunes, P >> vHv. In this case 

the form factor c,, has the smallest value, since 6~~ N vHv / 2, yielding the smallest 

longitudinal spacing h. The lattice of course should be as smooth as possible: an 

unbroken sequence of FODO cells with internal symmetry. The bending magnets are to 

be placed uniformly avoiding large discontinuities in the curvature. Finally, for a required 

configuration with order of bifircation p, it is required that the periodicity P >> p. 

The Circular Radio-Freauencv Ouadruuole Storage Ring 

The Circular Radio-Frequency Quadrupole (CRFQ) is a novel concept of storage ring for 

the accumulation of intense, low-energy beams of light and heavy ions [24]. The new 

concept is a natural development of the combined features of conventional storage rings 

and ion traps, and is basically a linear RFQ bent on itself and closed mechanically. 

Instead of quadrupole magnets, focussing of the particles is provided by the rf field of the 

device. The focussing period is very short L = ph, of only few centimeters, where h here 

is the rf wavelength. For a sufficiently low energy, there is no need of bending magnets, 

since the rf field itself is capable to keep the beam on a circular path. Since electrically 

the device is not closed, it is expected that ion beams can be stored at considerably higher 

intensities. The space charge limit is reached when the phase advance per period is 

lowered, for instance, from 90” down to 45” or even lower. Lowering the phase advance 

down to 0” with enough beam intensity and cooling active, may actually lead to beam 

crystallization. The advantages of the CRFQ are: small beam dimensions, higher beam 

intensity, and a more compact storage device. Moreover, it satisfies all the requirements 

needed to confine and to maintain stable complex Crystalline Beam configurations. 
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Collidinn Crvstalline Beams 

We have determined that Crystalline Beams are described by the critical particle-to- 

particle spacing h,, given by Eq. (8). Actually h,” is a measure of the ion density that can 

be reached at the limit of crystallization. We should compare this value with the density 

of an ordinary gaseous ion beam at the space-charge limit. This is given by the space- 

charge tune depression which, for a de-bunched beam, can be expressed in terms of the 

particle separation & 

AvHv w JcQ2r,,R2/A~2?vHv&,3 (35) 

Comparing this equation with Eq. (8) yields 

(h,/h,)3 N ny’c,11.2 (36) 

Thus, at very most, the Crystalline Beam density may equal but not exceed that of the 

original “warm” beam. 

If it should be possible to collide head-on two Crystalline Beams, one can take advantage 

of the particle organization to enhance the luminosity of the collision. Let us assume that 

the two colliding beams are identical and have the same intensity. Assume also that they 

circulate in separate and intersecting rings of the same size. The luminosity in the case 

the two beams are “warm” is 

L = aN’f,/xb’ (37) 

where a is the fraction of the ring circumference taken by the collision, f, is the 

revolution frequency, and scb’ the common cross-section. On the other end, if each 

Crystalline Beam is made of nS sub-strings, each with an equivalent cross-section rtu’, 

and we assume that we are able to align each pair of counter-moving sub-strings, the 

luminosity is 

& = a n, (N/n,)’ f, / na’ (38) 

The luminosity enhancement is then 

~Bmv = (1 /n,)(bla)’ (3% 
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The radius a of a sub-string is considerably smaller than the major radius b, and 

essentially determined by the noise of the cooling device. 

But can one obtain collision between Crystalline Beams? Without destroying them? The 

answer, at least for the case of two colliding strings, seems to be positive. A stable 

configuration has been found [25] where the two beams move against each other in a 

“pretzel” configuration as shown in Figure 10. The two beams arrange themselves so that 

the counter-moving ions avoid each other. The configuration is stable provided that the 

amplitude of the “pretzel” 

g > @h/nR)s 

with 2s the “pretzel” period. 

advantage of the collision 

s > a > g > Ion Size 

(W 

The following scaling ought to be satisfied in order to take 

(41) 

with a the vibration amplitude due to the residual temperature. 

Figure 10, A pair of Strings colliding head-on: The “Pretzel”. 

Conclusions 

Crystalline Beams are a futuristic topic of research. The study of Crystalline Beams is at 

the front-end of the Accelerator Technology. It helps to understand better the Space 

Charge and the Intra-Beam Scattering limitations presently encountered in low-energy 

ions accelerators (including protons). The practical demonstration will provide certainty 

that Space Charge and Intra-Beam Scattering effects can ultimately be overcome by 

generating a novel beam configuration. On the sideline, storage ring and laser cooling are 
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to be expanded with the addition of novel concepts, of which the CRFQ storage ring is an 

example. 

Crystalline Beams are useful for a variety of applications. For instance, with organized 

formations of ions, it is possible to enhance considerably the luminosity of colliding such 

beams. At the moment, no applications are foreseen in High-Energy and Nuclear Physics. 

Possible applications are in the Condensed Matter, Molecular and Atomic Physics. 

Personally, we are pursuing the concept of using colliding Crystalline Beams to produce 

nuclear power with the fusion of Boron with Hydrogen. 

We find unfortunate and frustrating the poor understanding and the complete lack of 

support by the funding agencies and institutions for this type of research. 
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